going beyond traditional wastewater treatment

Programme

3.00 pm	Opening and House Keeping Rules by SWA	Ihe se
3:05 pm	Speaker <i>by Mr. Alex Bettinardi</i> Product Technology Manager De Nora Water Technologies	Co-Organised by:
3.35 pm	Q&A Session	
3:50 pm	Closing by SWA	SUQ

Welcome The session will start soon

12th December 2022, Monday SGT: 3:00pm - 4:00pm **GMT: +8:00**

going beyond traditional wastewater treatment

Welcome

Co-Organised by: **DE NORA** *discover more* 12th December 2022, Monday SGT: 3:00pm - 4:00pm GMT: +8:00

<u>enquiry@swa.org.sg</u> T: (65) 6515 0812

going beyond traditional wastewater treatment

HOUSEKEEPING

- ✓ To ensure better connectivity, please mute your microphone and turn off the camera. You may communicate with us after the event or during the Q & A.
- Please share your questions in Q & A icon (right bottom) where we will try to provide answers where possible. Do identify yourself so we can respond to any unanswered questions
- If you need real time speech-to-text translation, please select your preferred language in the bottom left CC icon
- Please complete a 1min poll survey at end of the session.

Co-Organised by:

12th December 2022, Monday SGT: 3:00pm - 4:00pm GMT: +8:00

going beyond traditional wastewater treatment

- All information shared is for general information only and does not contain or convey any legal advice or administrative assistance.
- Information shared today is true and accurate as of publication date.
- The organiser and speakers reserve all rights in the provided materials
- This session will be recorded, shared and kept for as long as it serves a business purpose for the Association. By attending this event, you are giving your consent to this recording.

Co-Organised by:

12th December 2022, Monday SGT: 3:00pm - 4:00pm GMT: +8:00

Speaker

Ozone and AOP:

going beyond traditional wastewater treatment

Mr. Alex Bettinardi Product Technology Manager De Nora Water Technologies

Mr Alex Bettinardi has 12 years of experience dedicated to Ozone and Advanced Oxidation Processes for water treatment. Mr Alex uses this experience to translate a customer's need for contaminant removal into effective, and practical solutions. And he has the backing of De Nora's decades of experience in providing world class ozone system designs.

Co-Organised by:

12th December 2022, Monday SGT: 3:00pm - 4:00pm GMT: +8:00

Ozone and AOP: Going beyond traditional wastewater treatment

Presenter Alex Bettinardi

Agenda

Advanced Oxidation Processes (AOP)

Generates hydroxyl radicals, very powerful oxidants

Destroys organic contaminants, rendering them harmless

Most technically and economically feasible solution for removing 1,4-Dioxane

Air stripping and GAC not suitable for 1,4-D due to its solubility in water

Treating 1,4-Dioxane: AOP Solutions

UV + Hydrogen Peroxide UV + Chlorine Ozone + Hydrogen Peroxide

Other factors

ТОС

Power Costs

Footprint

Availability of oxygen

Used generally when UV Transmittance Higher

Used when UV Transmittance Lower

Current technologies in use Peroxide cost Peroxide destruction cost

Treating 1,4-Dioxane: Ozone + Peroxide

OH· **compounds** Radicals with high electronic potential

Very strong oxidizer

Activation is a complex process with different reaction mechanisms

Hydrogen peroxide in water $H_2O_2 \rightarrow HO_2 + H_1$ HO₂ ion + ozone produces radicals $2O_3 + H_2O_2 \rightarrow 2OH_1 + 3O_2$

When is Ozone Best?

Low water UV-T value

High TOC value in the water

When H₂O₂ quenching is a concern

When ozone is applied to solve other issues at the same time (pharma micropollutants, mycotoxins, etc.)

CASE STUDY: DP Lubrificanti, Rome

Chemical Company Wastewater Polishing

Biodiesel production

Using GAC downstream to reduce COD

Spending hundreds of thousands of €/year in GAC replacement.

Ozone applied for two applications:

- Sludge reduction
- Non-biodegradable COD oxidation tertiary treatment.

Recalcitrant Organics

CASE STUDY: Ashghal, Qatar

Agricultural Wastewater Reuse

Project Name	INTEGRATED INDUSTRIAL WASTEWATER TREATMENT WORKS (IIWWTW) PHASE I	
End-User	PUBLIC WORKS AUTHORITY STATE OF QATAR	
Design Flow	462 m ³ /h – 11,096 m ³ /d	
Process Objective	RCOD to BCOD conversion, prior to biological treatment	
RCOD (inlet)	323 ppm – 3,587 Kg/d	
Target Conversion Rate (RCOD to BCOD)	85%	
Ozone to RCOD Ratio	0.5 gO3/gRCOD	
Total Ozone Capacity	75 + 25 Kg/h	(Caral S
Ozone Concentration	10% wt	The second second
# of Ozone Generators (duty, stand-by)	3 +1	

CASE STUDY: Kuwait Refinery Wastewater Polishing

Resistant to traditional biological treatment

Thresholds for effluent are increasingly lower

Ozone and AOP are effective

Dosage 2 ppm ozone per 1 ppm of phenol 3 ppm ozone per 1 ppm of hydrocarbon

Cyanide

Note: <u>6.66</u> O3:COD ratio

Note: <u>6.85</u> O3:COD ratio

CASE STUDY: Brazil

Chemical Plant Wastewater Polishing

- 85 m³/h full scale
- Target cyanide <1 ppm</p>
- Tests conducted in batch

DE NORA

Manufacturing by-product Potential human carcinogen Contaminates groundwater and surface water Identified in wastewater

Hard to remove

DE NORA

CASE STUDY: Water Authority in the Northeast US

Initial process scheme Flocculation-sedimentation -> Ozone -> GAC -> UV-AOP

Revised process Flocculation-sedimentation -> Ozone-Peroxide (AOP) -> GAC -> UV

Design data:

Peak Design Flow	16.0 MGD(US)	
UV Transmittance	89% (minimum)	
Targeted Treatment #1	0.3-Log Removal of 1,4-Dioxane	
Targeted Treatment #2	1-Log Removal of <i>N</i> -nitrosodimethylamine (NDMA)	
Disinfection Requirement 4-Log inactivation of virus (>186mJ/cm ² per USEPA UVDG		

Indirect Potable Reuse

Results \$2 Million USD savings in capex 80% less peroxide consumption

CASE STUDY: Lariana, Italy Italian fabric district with blue/purple-colored effluent

Color Ozone reacts with chromophore group

Surfactants 3ppm ozone per ppm of surfactants

Lab and Pilot Testing

Highly variable contaminant and water matrix

Lab and/or pilot testing is required

Ideal industrial application approach: Lab Benchtop Testing Pilot Testing

Lab Benchtop Testing Options

Stock Solution Test

Solution made at ~33 degrees Concentrations of 20-80 ppm Solution is injected into the sample

Image Source: https://waterqualitysnwa.com/facilities/treatment-equipment/

Simple Diffuser Testing in a Mixed Reactor

Sample placed into a stirred vessel and injected with ozone through a diffuser

Instruments measure ozone concentration into and out of the vessel

Treated samples measure key parameters: Dissolved ozone COD

Other specific compounds of interest

Small Scale Pilot Testing Systems

Scaled Ozone Water Treatment System

Replicates Full-Scale Commercial Systems

Conducted on site

- Provides larger quantities of water to be studied
- Both batch and continuous testing is possible

Conducted at a De Nora facility

- Batch-style testing
- Sample size: one tote continuously cycled through the ozone water treatment system
- Taking samples over time allows measurements of interest (i.e., COD) to be related to ozone dose

Pilot systems use the same precision process as a commercial system

Gas concentration monitors Dissolved ozone and ORP monitors Gas and liquid flow instrumentation Temperature pH

Safety monitors for ozone and oxygen

On-site mobile unit

Simulate ozone and ozone AOP processes Multiple methods for ozone contact Ozone-demand or transfer efficiency testing

Ozone BAF

Evaluate advanced wastewater treatment for reuse applications

Optimize mitigation of DBP formation at drinking water plants

Compare O₃-BAF to other treatment technologies for micropollutant removal

WEBINAR

Ozone and AOP:

going beyond traditional wastewater treatment

Q & A

Moderate by: Ms Fran House, Marketing Manager (EMEA, Americas and Marine) De Nora Water Technologies

Co-Organised by:

12th December 2022, Monday SGT: 3:00pm - 4:00pm GMT: +8:00

Upcoming Events

Technical Site Visit: 11 Jan 2023

Keppel Marina East Desalination Plant

Networking Session: 02 Feb 2023

Singapore Water Industry Nite (SWIN)

Webinar: 15 Mar 2023

Sharing with Austria Embassy and Companies

Co-Organised by:

12th December 2022, Monday SGT: 3:00pm - 4:00pm GMT: +8:00

For further queries on the event, please contact :

Singapore Water Association T: (65) 65150812 E: <u>enquiry@swa.org.sg</u> www.swa.org.sg Co-Organised by: **DE NORA** *discover more* 12th December 2022, Monday SGT: 3:00pm - 4:00pm GMT: +8:00

